On a Diophantine Equation

نویسنده

  • Xin Zhang
چکیده

In this note, we mainly obtain the equation x2m − yn = z2 have finite positive integer solutions (x, y, z,m, n) satisfying x > y be two consecutive primes. Mathematics Subject Classification: 11A41; 11D41

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Diophantine Equation x^6+ky^3=z^6+kw^3

Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

On the Exponential Diophantine Equation

Let a, b, c be fixed positive integers satisfying a2 + ab + b2 = c with gcd(a, b) = 1. We show that the Diophantine equation a2x+axby+b2y = cz has only the positive integer solution (x, y, z) = (1, 1, 1) under some conditions. The proof is based on elementary methods and Cohn’s ones concerning the Diophantine equation x2 + C = yn. Mathematics Subject Classification: 11D61

متن کامل

ON THE DIOPHANTINE EQUATION xn − 1 x −

We prove that if (x, y, n, q) 6= (18, 7, 3, 3) is a solution of the Diophantine equation (xn−1)/(x−1) = y with q prime, then there exists a prime number p such that p divides x and q divides p − 1. This allows us to solve completely this Diophantine equation for infinitely many values of x. The proofs require several different methods in diophantine approximation together with some heavy comput...

متن کامل

On Cornacchia’s algorithm for solving the diophantine equation

We give a new proof of the validity of Cornacchia’s algorithm for finding the primitive solutions (u, v) of the diophantine equation u + dv = m, where d and m are two coprime integers. This proof relies on diophantine approximation and an algorithmic solution of Thue’s problem.

متن کامل

on ”NUMBER THEORY AND MATHEMATICAL PHYSICS” On recent Diophantine results

Diophantus of Alexandria was a greek mathematician, around 200 AD, who studied mathematical problems, mostly geometrical ones, which he reduced to equations in rational integers or rational numbers. He was interested in producing at least one solution. Such equations are now called Diophantine equations. An example is y − x = 1, a solution of which is (x = 2, y = 3). More generally, a Diophanti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017